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Mean Change Model
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We consider the following model
Xi = µi + ξi,

where
(µi)i≥1 is an unknown signal,
(ξi)i≥1 is a mean zero stationary stochastic process.

Based on observations X1, . . . , Xn, we want to test the hypothesis

H : µ1 = . . . = µn

against the alternative

A : µ1 = . . . = µk∗ ̸= µk∗+1 = . . . = µn, for some k∗ ∈ {1, . . . , n− 1}.



Two-Sample U-Statistics
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Consider two samples X1, . . . , Xn1 and Y1, . . . , Yn2 and a kernel function h : R2 → R. Then

1

n1n2

n1∑
i=1

n2∑
j=1

h(Xi, Yj)

is a two-sample U-statistic.

For change-point problems the two samples are given by X1, . . . , Xk and Xk+1, . . . , Xn,
where k is the potential change-point.

Taking suitable functionals of
∑k

i=1

∑n
j=k+1 h(Xi, Xj), 1 ≤ k ≤ n− 1, a variety of

change-point tests can be derived.



Maximum Test Statistic
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max
1≤k≤n−1

1

n3/2
∣∣∣ k∑
i=1

n∑
j=k+1

h(Xi, Xj)
∣∣∣

Specific kernel functions:

h(x, y) = y− x leads to the CUSUM test statistic

h(x, y) = (1{x≤y} − 1
2) leads to the Wilcoxon test statistic



CUSUM and Wilcoxon Test Statistic

Kata Vuk Change-Point Analysis with weighted U-Statistics 4/25

CUSUM:

max
1≤k≤n−1

1

n3/2
∣∣∣ k∑
i=1

n∑
j=k+1

(Xj − Xi)
∣∣∣ = max

1≤k≤n−1

1√
n

∣∣∣ k∑
i=1

Xi −
k
n

n∑
j=1

Xj
∣∣∣

Wilcoxon:

max
1≤k≤n−1

1

n3/2
∣∣∣ k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣ = max
1≤k≤n−1

1

n3/2
∣∣∣ k∑
i=1

rank(Xi)−
k
n

n∑
i=1

rank(Xi)
∣∣∣

Both tests compare the first part of the sample to the average. The Wilcoxon test involves
the rank of the data, whereas the CUSUM involves their values



Asymptotic Distribution under the Hypothesis
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max
1≤k<n

1

n3/2
∣∣∣ k∑
i=1

n∑
j=k+1

h(Xi, Xj)
∣∣∣

converges in distribution to the supremum of a standard Brownian bridge process.

I.i.d. data: M. CSÖRGŐ, L. HORVÁTH (1988). Invariance Principles for Change- point
Problems.
Short range dependent data: H. DEHLING, R. FRIED, I. GARCIA, M. WENDLER (2015).
Change-Point Detection Under Dependence Based on Two-Sample U-Statistics.

Different limit distribution for
Long range dependent data: H. DEHLING, E. ROOCH, M. TAQQU (2017). Two-Sample U-
Statistic Processes for Long-Range Dependent Data.



Data Example: Elbe River
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Monthly average discharge of the river Elbe in Dresden, Germany

Considered years: 1806 to 1900



Elbe River Data: Values of the Test Statistics
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Elbe River Data: Detected Change-Point
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Elbe River: A shorter time period
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Considered years: 1806 to 1859 (shortly after the change-point)



Problem: Test statistics donʼt detect the change-point
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Solution: Weighted Test Statistics
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Unweighted→Weighted Test Statistics

Consider
∑k

i=1

∑n
j=k+1(Xj − Xi)with X1, . . . , Xn i.i.d. and Var(X1) = σ2.

Standardizing
∑k

i=1

∑n
j=k+1(Xj − Xi) leads to the process

1√
k(n− k)nσ

k∑
i=1

n∑
j=k+1

(Xj − Xi)

Taking the maximum and replacing Xj − Xi by h(Xi, Xj) leads to theweighted test statistic

max
1≤k≤n−1

1√
k(n− k)nσ

k∑
i=1

n∑
j=k+1

h(Xi, Xj).



Results under the Hypothesis
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Limit distribution of the weighted test statistic

max
1≤k≤n−1

1√
k(n− k)nσ

k∑
i=1

n∑
j=k+1

h(Xi, Xj)

for i.i.d. data: M. CSÖRGŐ, L. HORVÁTH (1988). Invariance Principles for Change- point
Problems.

Our contribution:
For short range dependent data: H. DEHLING, K. VUK, M. WENDLER (2022). Change-Point
Detection Based on Weighted Two-Sample U-Statistics.



Result: Asymptotic Distribution under the Hypothesis
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Theorem (Dehling, V., Wendler, 2022)
Let (Xi)i≥1 be an α-mixing, strictly stationary process and let h(x, y) be a bounded anti-symmetric
kernel. Then, under some technical assumptions, it holds under the hypothesis√

2 log log n
σ

max
1≤k<n

1√
k(n− k)n

∣∣∣ k∑
i=1

n∑
j=k+1

h(Xi, Xj)
∣∣∣− βn

D−→ G, as n → ∞,

where G denotes a Gumbel extreme value distribution, i.e. P(G ≤ x) = exp(−2 exp(−x)), and
where βn = 2 log log n+ 1

2 log log log n− 1
2 logπ. The variance is given by

σ2 = Var(h1(X1)) + 2

∞∑
k=2

Cov(h1(X1), h1(Xk))

where h1(x) = E h(x, Y)− E h(X, Y) and X, Y are independent with the same distribution as X1.



Idea of Proof: Hoeffdingʼs Decomposition
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Important technical tool in the study of U-statistics.

If E|h(X, Y)| < ∞ for two independent random variables X and Ywe have

h(x, y) = θ + h1(x) + h2(y) + Ψ(x, y),

where

θ = Eh(X, Y)
h1(x) = Eh(x, Y)− θ

h2(y) = Eh(X, y)− θ

Ψ(x, y) = h(x, y)− h1(x)− h2(y)− θ.

Note that θ = 0 for anti-symmetric kernels (i.e. h(x, y) = −h(y, x)).



Hoeffdingʼs Decomposition applied to the Test Statistic
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We apply Hoeffdingʼs decomposition to the test statistic and obtain

max
1≤k<n

√
log log n
k(n− k)n

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

h(Xi, Xj)

∣∣∣∣∣∣
= max

1≤k<n

√
log log n
k(n− k)n

∣∣∣∣∣(n− k)
k∑

i=1

h1(Xi) + k
n∑

i=k+1

h2(Xi)︸ ︷︷ ︸
linear part

+

k∑
i=1

n∑
j=k+1

Ψ(Xi, Xj)︸ ︷︷ ︸
degenerate part

∣∣∣∣∣.

The degenerate part is asymptotically negligible.
The linear part determines the asymptotic behavior.



Result: Consistency under the Alternative
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Theorem (Dehling, V., Wendler, 2022)
Assume that A holds and let h be a degenerate kernel. Define∆n := µk∗n+1 − µk∗n . Under some
technical assumptions, the following holds: If√

k∗n(n− k∗n)
n log log n |∆n| −→ ∞,

then

(log log n)−1/2 max
1≤k<n

1√
k(n− k)n

∣∣∣ k∑
i=1

n∑
j=k+1

h(Xi, Xj)
∣∣∣ P−→ ∞.



Back to the Elbe River Data Example
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Weighted Test Statistics detect the Change-Point
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Simulation Study: Power Comparison
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Size-corrected power of the — unweighted and - - - weighted test statistics
800 i.i.d. observations; 20000 runs; k∗n = [τ∗n]; ∆ = 0.3



Flexible Weight Function
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We can write

1√
k(n− k)n

k∑
i=1

n∑
j=k+1

h(Xi, Xj)

=
1

n3/2
1

( kn(1−
k
n))

1/2

k∑
i=1

n∑
j=k+1

h(Xi, Xj).

General weight functions of the form
w(λ) = (λ(1− λ))γ , λ ∈ (0, 1), yield

1

n3/2
1( k

n(1−
k
n)
)γ k∑

i=1

n∑
j=k+1

h(Xi, Xj).

w(λ) = 1

(λ(1− λ))γ
, λ ∈ (0, 1)



Two Types of Alternatives
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Model: Xi = µi + ξi

(ξi)i≥1 is a mean zero stationary stochastic process
(µi)i≥1 is an unknown signal

Testing problem:

H : µ1 = . . . = µn vs. A : µ1 = . . . = µk∗n ̸= µk∗n+1 = . . . = µn, for some k∗n ∈ {1, . . . , n− 1}.

Alternative 1: Awith k∗n = [τ ∗n], τ∗ ∈ (0, 1), and∆n = µk∗n+1 − µk∗n = c√
n ,where c is a

constant.

Alternative 2: Awith k∗n ≈ cnκ,where κ = 1−2γ
2(1−γ) and∆n ≡ ∆.



Result: Asymptotic Distribution under Alternative 1
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Alternative 1: k∗n = [τ∗n], τ∗ ∈ (0, 1), and∆n = µk∗n+1 − µk∗n = c√
n

Theorem (Dehling, V., Wendler, 2022+)
Assume that ξ1 has bounded density and that g is an odd function with g(ξ2 − ξ1) having finite second
moments. Moreover, assume that Var(h1(ξ1)) → 0 and that cg = limn→∞

√
nu(∆n) exists. Under

Alternative 1, for 0 ≤ γ < 1
2 and as n → ∞,

max
1≤k≤n

1

n3/2
1( k

n (1−
k
n )
)γ k∑

i=1

n∑
j=k+1

g(Xj − Xi)
D−→ sup

0≤λ≤1

1

(λ(1− λ))γ
[σW(0)(λ) + cgϕτ∗(λ)],

where W(0)(λ) is a Brownian bridge process, σ2 = E(g21(ξ1)) > 0 and

g1(ξ1) = E[g(ξ − ξ1)]− E(g(ξ − η)),

u(∆n) = E[g(ξ − η +∆n)− g(ξ − η)],

h1(ξ1) = E[g(ξ − ξ1 +∆n)− g(ξ − ξ1)]− u(∆n),

where ξ and η are independent with the same distribution as ξ1,

ϕτ∗(λ) =

{
λ(1− τ∗) for λ ≤ τ∗

τ∗(1− λ) for λ ≥ τ∗.



Power Comparison under Alternative 1
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Size-corrected power. SImulations: 1000 i.i.d. standard normally distributed observations; 5000 runs



Power Comparison under Alternative 1
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Overall-power compared to the envelope power for different values of the parameter γ and
different shift heights∆n.

The simulations are based on n = 1000 independent, standard normally distributed observations.



Result: Asymptotic Distribution under Alternative 2
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Alternative 2: k∗n ≈ cnκ,where κ = 1−2γ
2(1−γ) and∆n ≡ ∆

Theorem (Dehling, V., Wendler, 2022+)
Assume that g(ξ2 − ξ1) has finite second moments. Moreover, assume that Var(h1(ξ1)) < ∞.
Then, under Alternative 2 and as n → ∞, we have for γ = 0

max
1≤k≤n

1

n3/2
∣∣∣ k∑
i=1

n∑
j=k+1

g(Xj − Xi)
∣∣∣ D−→ sup

0≤λ≤1

∣∣∣σW(0)(λ) + c(1− λ)u(∆)
∣∣∣,

and for 0 < γ < 1/2

max
1≤k≤n

1

n3/2
1( k

n(1−
k
n)
)γ ∣∣∣ k∑

i=1

n∑
j=k+1

g(Xj − Xi)
∣∣∣ D−→ max

{
c1−γu(∆), sup

0≤λ≤1

σ

(λ(1− λ))γ
∣∣W(0)(λ)

∣∣} ,

where σ and u(∆) and h1(ξ1) are defined as in the theorem under Alternative 1.



Short Summary and Future Work
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Test statistic:
1

n3/2
1( k

n(1−
k
n)
)γ k∑

i=1

n∑
j=k+1

h(Xi, Xj).

Asymptotic distribution under the hypothesis and consistency under the alternative for
γ = 1/2 for short range dependent data
Asymptotic distribution under the two types of alternative for 0 ≤ γ < 1/2 and
h(x, y) = g(y− x)
Simulation study: Weighted test statistics have better power when we have early or late
changes

Future work:
Asymptotic theory under the alternative for dependent data
Gradual changes
Multiple changes


