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Multilayer Networks

Figure: Visualisation of two multilayer networks. (a) Air transportation
network from Cardillo et al. (2013). (b) Bank-wiring room network from
Roethlisberger and Dickson (2003).



A Single Multilayer Random Dot Product Graph (MRDPG)



Adjacency Tensors

Definition (Adjacency tensor)

The adjacency tensor A ∈ Rn1×n2×L of a multilayer network
G = (V1,V2, E ,L), is defined as

Ai ,j ,l =

{
1, if (i , j , l) ∈ E ,
0, otherwise.

with

▶ node sets V1 = {1, . . . , n1} and V2 = {1, . . . , n2};
▶ a layer set L = {1, . . . , L};
▶ a edge set E ⊆ {(i , j , l) : i ∈ V1, j ∈ V2, and l ∈ L}.



Latent Position Models

The latent position model is defined as follows.

1. Each node i is mapped to a vector Xi ∈ X with some
underlying latent space X ⊂ Rd .

2. Conditional on latent positions, the i-th and j-th nodes
connect independently with probability K (Xi ,Xj) with the
function K : X × X → [0, 1].

The random dot product graph (RDPG) is an especially
tractable latent position model with the function K satisfies
K (x , y) = x⊤y .



MRDPGs

Definition (MRDPGs)

Let {Xi}n1i=1, {Yj}n2j=1 ⊂ Rd be mutually independent random

vectors generated from F and F̃ , respectively.
We say that A is an adjacency tensor of a MRDPG, with random
distributed latent positions {Xi}n1i=1, {Yj}n2j=1 and fixed weight

matrices {W(l)}Ll=1 ⊂ Rd×d , if

P{A|{Xi}n1i=1, {Yj}n2j=1} =

n1,n2,L∏
i ,j ,l=1

P
Ai,j,l

i ,j ,l (1− Pi ,j ,l)
1−Ai,j,l

=

n1,n2,L∏
i ,j ,l=1

(
X⊤
i W(l)Yj

)Ai,j,l
(
1− X⊤

i W(l)Yj

)1−Ai,j,l .



Estimation Methods for MRDPGs

▶ The unfolded adjacency spectral embeddings (UASE)
method was proposed by Jones and Rubin-Delanchy (2020);

▶ Maximum likelihood estimators (MLEs) were introduced
in Zhang et al. (2020);

▶ Convex optimization estimators in combination with a
nuclear norm penalty were proposed by MacDonald et al.
(2022).



Tensor Based Estimation Methods

Low-rank tensor estimation:

▶ The higher order SVD (HOSVD) method was introduced
by De Lathauwer et al. (2000b);

▶ The higher order orthogonal iteration (HOOI) method
was introduced by De Lathauwer et al. (2000a).

▶ The tensor heteroskedastic principal component analysis
(TH-PCA) algorithm proposed by Han et al. (2022) who
applied the heteroskedastic principal component analysis
(H-PCA) algorithm introduced in Zhang et al. (2018) to
accommodate heteroskedastic noise.

We use the TH-PCA algorithm as the main algorithm for
estimating a single MRDPG.



Theoretical Results

Theorem (Estimation error bound)

Under some regularity conditions, it holds with a high probability
that

∥P̂ − P∥2F ≲ d2m + n1d + n2d + Lm

where

▶ P̂ is the output of the TH-PCA algorithm;

▶ d is the dimension of the latent position;

▶ m is the rank of the matrix related to the weight matrices
{W(l)}Ll=1.



Theoretical Comparison

We emphasise three points here.

▶ There is no restriction of n1, n2, L, d and m.

▶ It achieves the minimax optimal rate of estimation error
(the lower bound shown in Zhang and Xia (2018)).

▶ It has a sharper estimation error bound than all other
methods. For example, the convex optimization estimators
with high probability have the following estimation error bound

∥P̂COE − P∥2F ≲ L(n1 ∨ n2)d .



Numerical Comparison

Figure: Multilayer stochastic block models. Left panel: n1 = 100 and
L ∈ {10, 20, 30, 40}. Right panel: L = 20 and n ∈ {50, 100, 150, 200}. Each
result is shown in the form of mean and standard deviation.



Dynamic Multilayer Random Dot Product Graphs (D-MRDPGs)



D-MRDPGs

Definition (D-MRDPGs)
Let {Xi (t)}n1i=1, {Yj(t)}n2j=1 ⊂ Rd be mutually independent random

vectors generated from F (t) and F̃ (t), respectively.
We say that {A(t)}t∈N∗ is a sequence of independent adjacency tensors
of D-MRDPGs, with random distributed latent positions {Xi (t)}n1i=1

{Yj(t)}n2j=1 and fixed weight matrices {Wl(t)}Ll=1.



Change Point Analysis

Given D-MRDPGs {A(t)}t∈N∗ ⊂ Rn1×n2×L, for each t ∈ N∗, let

H(t) =

(
{X1(t)}⊤W1(t)Y1(t), . . . , {X1(t)}⊤W(L)(t)Y1(t)

)⊤

denote a L-dimensional random vector at time point t, with distribution
H(t).

Assumption (No change point)
Given a D-MRDPGs {A(t)}t∈N∗ ⊂ Rn1×n2×L, assume that

H(1) = H(2) = . . .

One change point analysis: Assume that there exists an integer ∆ ≥ 1
such that

H(1) = · · · = H(∆) ̸= H(∆ + 1) = H(∆ + 2) = · · · .



The Nonparametric Distributional Change

▶ The univariate case:
▶ the Kolmogorov–Smirnov (KS) distance between distribution

functions.

▶ The multivariate case:
▶ the supremum norm of the differences between the densities.
▶ transforming the change to the change in the univariate mean.

In our context, the density may not exist.



The Expectation of the Kernel Density Estimator

The expectation of the kernel density estimator (KDE):
Given a kernel function K : RL → R and a bandwidth h > 0, for
t ∈ N∗, let Gt : [0, 1]

L → R with

Gt(·) = E
{
h−LK

(
· − P1,2,:(t)

h

)}
.

▶ The expectation of KDE is a Lebesgue probability density
regardless of whether the nonparametric multivariate
distribution admits a Lebesgue density

▶ The expectation of KDE is often able to capture important
topological properties of the underlying distribution or of its
support shown in Fasy et al. (2014).



One Change Point Assumption

Assumption (One change point)
Given D-MRDPGs {A(t)}t∈N∗ ⊂ Rn1×n2×L. Assume that there exists an
integer ∆ ≥ 1 such that

G1 = · · · = G∆ ̸= G∆+1 = G∆+2 = · · · .

Let the jump size be

κ = sup
z∈[0,1]L

|G∆(z)− G∆+1(z)| > 0.



Online Change Point Detection Algorithm



Statistics

We emphasise three points for computing the statistic D̂s,t for any
1 ≤ s < t.

▶ It is an extension of the CUSUM statistic using the KDEs.

▶ We estimate the average of the probability tensors instead of
estimating the single probability tensor at each time point.

▶ We only use the first singular vector for spectral estimations
of the average of the probability tensors.



Theoretical results

Assumption (Signal-to-noise ratio condition)

Assume that there exists a large enough absolute constant
CSNR > 0 such that, for some α ∈ (0, 1), it holds

κ
√
∆ > CSNRh

−L−1

√
(L2 ∨ d) log{(n1 ∨ n2 ∨∆)/α}

n1 ∧ n2
.

Theorem
Let D-MRDPGs {A(t)}t∈N∗ ⊂ Rn1×n2×L and α ∈ (0, 1) and ∆̂ be the
output of the algorithm. Under some regularity conditions, Let

▶ Under no change point assumption, it holds that P∞{∆̂ < ∞} < α.

▶ Under one change point assumption and signal-to-noise ratio
condition, it holds that with absolute constant Cϵ > 0

P∆

{
∆ < ∆̂ ≤ ∆+ Cϵ

(L2 ∨ d) log ((n1 ∨ n2 ∨∆)/α)

κ2h2L+2(n1 ∧ n2)

}
≥ 1− α.



Theoretical Comparison

We emphasise three points here.

▶ Compared with Padilla et al. (2019) and most dynamic
network papers, our signal-to-noise ratio condition is
weaker up to a

√
∆ factora and localisation error is sharper

up to a ∆ factor.

▶ We only use the first singular vectors for spectral estimation
of the average of the probability tensors and do not need to
estimate the ranks of the probability tensors.

▶ We allow including the model parameters including the
number of nodes, the dimension of latent position and the
magnitude of the change, to vary as functions of the location
of the change point.



Thank you!
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