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Peter Bühlmann (ETH Zürich)
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(offline) change point detection
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Solt Kovács (ETH Zürich) Optimistic search strategies 3 / 62



Another example
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Last example
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Change point detection in general

observe ordered Xi ∈ Rp, i = 1, . . . ,T

notation: we map the T observations to [0, 1]
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Goals of change point detection

estimate the number of change points κ

estimate the location of change points τ1, . . . , τκ
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Change points in big data - challenges

algorithms/optimization

(non)parametric assumptions

missing values

dependence

...
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Finding change points

How do we search usually?
– Full grid of all possible split points 2, . . . ,T
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Finding change points
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Finding change points
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Finding change points
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Finding change points
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Searching for the best split - Motivation
Assume for now a single change point!

How do we search usually?
– Full grid of all possible split points 2, . . . ,T

What if model fits are expensive?
– e.g. graphical Lasso, Lasso, neural network,

Random Forest, . . .
– Infeasible computationally (for large T )

Is it really necessary to consider the full grid?
– No: Optimistic Search (OS) strategies

with only O(logT ) evaluations!
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Searching for the best split - An example

full grid search vs. (naive) Optimistic Search
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What happens?
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What happens? - Summary

At each step:

evaluate a point in the middle of the remaining
longer segment

compare the gains

keep the more promising side (with higher gain)

Why only O(logT ) evaluations?

Guaranteed to discard at least 1/4 of the current
search interval in each step
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What happens? - Visually

  

r−w=⌈ν(r−s)⌉

G(L ,R ](s)>G(L ,R ](w)G(L ,R ](s)≤G(L , R ](w) b)

s w

b)

a)

a)

l r RL

continue with 
nOS(s,w,r|L,R)

continue with 
nOS(l,s,w|L,R)

G(L , R ](s)

G(L , R ](l)
G(L ,R ](r )

G(L ,R ]

Procedure similar to Golden section search [Kiefer, 1953,
Avriel and Wilde, 1966, Avriel and Wilde, 1968]
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Any guarantees?

Population/noiseless cases:

For a unimodal function (e.g. single change point
case), naive OS returns global maximum in
O(logT ) steps.
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Population/noiseless case
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Any guarantees?

Population/noiseless cases:

For a unimodal function (e.g. single change point
case), naive OS returns global maximum in
O(logT ) steps.

What about noisy cases?

which model?
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Noisy cases
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univariate Gaussian changes in mean

Assume independent observations X1, . . . ,XT and that

Xτ0T+1(= X1), . . . ,Xτ1T ∼ N (µ0, σ
2) (= F0)

...

XτκT+1, . . . ,Xτκ+1T (= XT ) ∼ N (µκ, σ
2) (= Fκ) ,

where {τi : i = 1, . . . , κ} gives the location of change
points satisfying

0 = τ0 < τ1 < · · · < τκ+1 = 1 and τiT ∈ N ,

means µi 6= µi−1 for i = 1, . . . , κ give the levels on
segments, and the common standard deviation σ > 0 is
known. Assume w.l.o.g. σ = 1.
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univariate Gaussian changes in mean

0 500 1000 1500 2000

-1
0

-5
0

5
10

15
20

time
0 500 1000 1500 2000

-2
0

-1
0

0
10

20
30

time

0 500 1000 1500 2000

-4
0

-2
0

0
20

40

time
0 500 1000 1500 2000

-4
0

-2
0

0
20

40
60

time
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univariate Gaussian changes in mean

Define the minimal segment length λ as

λ ≡ λT = min
i=0,...,κ

(τi+1 − τi) ,

and the minimal jump size δ as

δ ≡ δT = min
i=1,...,κ

δi with δi = |µi − µi−1| .
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univariate Gaussian changes in mean

We use the CUSUM statistics as “gain”:

CS(l ,r ](s) =

√
r − s

n(s − l)

s∑
t=l+1

Xt −

√
s − l

n(r − s)

r∑
t=s+1

Xt ,

with integers 0 ≤ l < s < r ≤ T and n = r − l .
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Theory for naive OS

For the univariate Gaussian change in mean model
above with a single change point (i.e. κ = 1), using
CUSUM statistics as “gain”:

Naive OS is consistent with optimal localization
error if the ratio of shorter versus longer segment is
not “too unbalanced”.

Formally, require
δλ
√
T ≥ C0

√
logT .
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Solt Kovács (ETH Zürich) Optimistic search strategies 37 / 62



Failure of naive OS
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Solt Kovács (ETH Zürich) Optimistic search strategies 38 / 62



Failure of naive OS

0 200 400 600 800 1000

-4
0

2
4

6
8

time

ob
se
rv
at
io
ns

0 200 400 600 800 1000

0.
00

0.
02

0.
04

0.
06

time

ga
in
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Theory for naive OS

For the univariate Gaussian change in mean model
above with a single change point (i.e. κ = 1), using
CUSUM statistics as “gain”:

Naive OS is consistent with optimal localization
error if the ratio of shorter versus longer segment is
not “too unbalanced”. Formally, require
δλ
√
T ≥ C0

√
logT .

Suboptimal compared to weakest possible condition
δ
√
λ
√
T ≥

√
log logT (see [Liu et al., 2019]).

Can we improve? Yes, advanced Optimistic
Search!
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Advanced Optimistic Search
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Solt Kovács (ETH Zürich) Optimistic search strategies 43 / 62



Advanced Optimistic Search
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advanced Optimistic Search

Idea:

motivated by [Liu et al., 2019] and
[Kovács et al., 2020], check dyadic points
{2, 4, 8, 16, . . . ,T − 16,T − 8,T − 4,T − 2}
around maximum select a suitable starting region

do naive OS in the selected region

Theory:

For the univariate Gaussian change in mean model
above with a single change point (i.e. κ = 1) the
advanced OS is (nearly) minimax optimal.
Formally, we require δ

√
λT ≥ C0

√
logT .
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Multiple change points?

Combinations possible with

Binary Segmentation [Vostrikova, 1981]

Seeded Binary Segmentation [Kovács et al., 2020]

Wild Binary Segmentation [Fryzlewicz, 2014]

Circular Binary Segmentation [Olshen et al., 2004]

...
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Random intervals [Fryzlewicz, 2014]

1 T/4 T/2 3T/4 T
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Seeded intervals [Kovács et al., 2020]

1 T/4 T/2 3T/4 T

I4

I3

I2

I1
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Multiple change points?

Optimistic Seeded Binary Segmentation (OSeedBS,
with narrowest over threshold selection):

Minimax optimality and worst case O(T )
computational cost for the above univariate
Gaussian change in mean model with multiple
change points, i.e. κ > 1

Sublinear computational cost possible under
additional assumptions
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Optimistic Seeded BS (OSeedBS)
scenario SeedBS OSeedBS

number
of intervals

O(logT ) O(logT )

“easy”
number of
evaluations

O(T logT ) O(logT · logT )

number
of intervals

O(T ) O(T )

“difficult”
number of
evaluations

O(T logT ) O(T )

Hence, OSeedBS has a sublinear number of
evaluations in “intermediate” cases when no need to
generate all O(T ) intervals.
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Optimistic Binary Segmentation

  

binary segmentation optimistic binary segmentation

Iteration

I

II

III

S
1

S
2 S

3
S

4

IV

V

S
1

S
2 S

3
S

4
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Special cases for multiple change points
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Some ideas on how to tackle these special cases (maybe
for discussion?)
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Computational costs for OSeedBS

So far, we considered the number of evaluations. Why?

recall first example from introduction with
high-dimensional Gaussian graphical models

no cheap updates of fits for neighbouring split
points in complex models (e.g. lasso, graphical
lasso, random forest, time series fits, etc.)

hence, in more complex scenarios with such fits,
driving cost is the number of evaluations
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Computational costs for OSeedBS

How about the univariate Gaussian case?

If cumulative sums have been pre-computed:

then cost of an evaluation O(1)

the (possibly sublinear) number of evaluations
equals the actual computational costs

If cumulative sums are not available:

calculating cumulative sums is O(T )

worst case cost O(T ) with NOT selection
independently of number of change points (and
statistically optimal)
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Multiple change points? - An example

computational time (seconds)
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Multiple change points?

Overall:

Multiple change points more challenging

Many combinations possible with existing
techniques with differing computational or
theoretical advantages
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Main messages

Optimistic Search strategies:

very strong (asymptotic) guarantees in single
change point cases (in univariate Gaussian change
in mean model)

extendable to multiple change point cases
extendable to multivariate/high-dim setups change
point cases
extendable to other distributions
very few evaluations of the gain function, hence,
super fast
applicable and most useful in more complex/costly
multivariate, high-dimensional, etc. scenarios
simulation results: speedup (of orders of magnitude)
while barely sacrificing (statistical) estimation error
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Outlook

could be applied to speed up many other multiple
change point techniques (IDetect, CBS, ...)

could be used in sequential/online setups

...
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Overall conclusions

optimistic search: arxiv.org/abs/2010.10194

seeded BS: arxiv.org/abs/2002.06633

Change-Point Detection for Graphical Models in the
Presence of Missing Values: in JCGS

Thank you for your attention!
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