Optimistic Search Strategy: Change-point Detection for Large-scale Data via Adaptive Logarithmic Queries

Solt Kovács

Seminar for Statistics ETH Zürich

Brighton, 2022

Solt Kovács (ETH Zürich) [Optimistic search strategies](#page-80-0) 1 / 62

joint work with

- Housen Li (U. Göttingen)
- Lorenz Haubner (ETH Zürich)
- Axel Munk (U. Göttingen)
- Peter Bühlmann (ETH Zürich)

(offline) change point detection

Another example

 $\frac{1}{2}$ Solt Kovács (ETH Zürich) [Optimistic search strategies](#page-0-0) 4 / 62

Last example

 \leftarrow

 Q ∽

÷.

Change point detection in general

- observe ordered $X_i \in \mathbb{R}^p, i = 1, \ldots, T$
- notation: we map the T observations to [0, 1]

Goals of change point detection

- **e** estimate the number of change points κ
- **e** estimate the location of change points τ_1, \ldots, τ_k

Change points in big data - challenges

- algorithms/optimization
- (non)parametric assumptions
- **•** missing values
- **o** dependence

 \bullet . . .

Change points in big data - challenges

- algorithms/optimization
- (non)parametric assumptions
- **•** missing values
- **o** dependence

 \bullet . . .

How do we search usually? – Full grid of all possible split points $2, \ldots, T$

Solt Kovács (ETH Zürich) [Optimistic search strategies](#page-0-0) 13 / 62

Searching for the best split - Motivation

Assume for now a single change point!

How do we search usually?

– Full grid of all possible split points $2, \ldots, T$

What if model fits are expensive?

– e.g. graphical Lasso, Lasso, neural network, Random Forest, . . .

 $-$ Infeasible computationally (for large T)

Searching for the best split - Motivation

Assume for now a single change point!

How do we search usually?

– Full grid of all possible split points $2, \ldots, T$

What if model fits are expensive?

– e.g. graphical Lasso, Lasso, neural network, Random Forest, . . .

 $-$ Infeasible computationally (for large T)

Is it really necessary to consider the full grid? – No: Optimistic Search (OS) strategies with only $O(\log T)$ evaluations!

Searching for the best split - An example

full grid search vs. (naive) Optimistic Search

重目 のへぐ

メロメ メ都 メメ きょくきょう

 $E|E| \leq 990$

メロメ メ都 メメ きょくきょう

 $E|E| \leq 990$

メロメ メ都 メメ きょくきょう

K ロ ▶ K @ ▶ K 로 ▶ K 로 ▶ 그로 ⊞ 19 Q @

K ロ > K 個 > K ミ > K ミ > (로) = 10 0 0 0

K ロ > K 個 > K ミ > K ミ > (로) = 10 0 0 0

K ロ > K 個 > K ミ > K ミ > (로) = 10 0 0 0

K ロ > K 個 > K ミ > K ミ > (트) = K 9 Q @

What happens? - Summary

At each step:

- \bullet evaluate a point in the middle of the remaining longer segment
- \bullet compare the gains
- keep the more promising side (with higher gain)

What happens? - Summary

At each step:

- \bullet evaluate a point in the middle of the remaining longer segment
- \bullet compare the gains
- keep the more promising side (with higher gain)

Why only $O(\log T)$ evaluations?

What happens? - Summary

At each step:

- \bullet evaluate a point in the middle of the remaining longer segment
- \bullet compare the gains
- keep the more promising side (with higher gain)

Why only $O(\log T)$ evaluations?

• Guaranteed to discard at least $1/4$ of the current search interval in each step

What happens? - Visually

Procedure similar to Golden section search [\[Kiefer, 1953,](#page-81-1) [Avriel and Wilde, 1966,](#page-81-2) [Avriel and Wilde, 1968\]](#page-81-3)

Population/noiseless cases:

For a unimodal function (e.g. single change point case), naive OS returns global maximum in $O(\log T)$ steps.

Population/noiseless case

Population/noiseless cases:

• For a unimodal function (e.g. single change point case), naive OS returns global maximum in $O(\log T)$ steps.

What about noisy cases?

which model?

Noisy cases

univariate Gaussian changes in mean

Assume independent observations X_1, \ldots, X_T and that

$$
X_{\tau_0\, \tau+1}(=X_1),\ldots,X_{\tau_1\, \tau}\sim \mathcal{N}(\mu_0,\sigma^2)\qquad \ (=F_0)\\ \vdots
$$

$$
X_{\tau_{\kappa}}\tau_{+1},\ldots,X_{\tau_{\kappa+1}}\tau(=X_{\mathcal{T}})\sim\mathcal{N}(\mu_{\kappa},\sigma^2)\qquad\left(=F_{\kappa}\right),
$$

where $\{\tau_i\,:\,i=1,\ldots,\kappa\}$ gives the location of change points satisfying

$$
0=\tau_0<\tau_1<\cdots<\tau_{\kappa+1}=1\quad\text{and}\quad\tau_i\,\mathcal{T}\in\mathbb{N}\,,
$$

means $\mu_i \neq \mu_{i-1}$ for $i = 1, \ldots, \kappa$ give the levels on segments, and the common standard deviation $\sigma > 0$ is known. Assume w.l.o.g. $\sigma = 1$.
univariate Gaussian changes in mean

Solt Kovács (ETH Zürich) [Optimistic search strategies](#page-0-0) 34 / 62

Define the minimal segment length λ as

$$
\lambda \equiv \lambda_{\mathcal{T}} = \min_{i=0,\dots,\kappa} (\tau_{i+1} - \tau_i),
$$

and the minimal jump size δ as

$$
\delta \equiv \delta_{\mathcal{T}} = \min_{i=1,\dots,\kappa} \delta_i \qquad \text{with} \quad \delta_i = |\mu_i - \mu_{i-1}| \; .
$$

We use the CUSUM statistics as "gain":

$$
\text{CS}_{(l,r]}(s) = \sqrt{\frac{r-s}{n(s-l)}} \sum_{t=l+1}^{s} X_t - \sqrt{\frac{s-l}{n(r-s)}} \sum_{t=s+1}^{r} X_t,
$$

with integers $0 \leq l < s < r \leq T$ and $n = r - l$.

• For the univariate Gaussian change in mean model above with a **single** change point (i.e. $\kappa = 1$), using CUSUM statistics as "gain":

Naive OS is consistent with **optimal localization** error if the ratio of shorter versus longer segment is not "too unbalanced".

• For the univariate Gaussian change in mean model above with a **single** change point (i.e. $\kappa = 1$), using CUSUM statistics as "gain":

Naive OS is consistent with **optimal localization** error if the ratio of shorter versus longer segment is not "too unbalanced". Formally, require not too unbalanced $\delta\lambda\sqrt{\mathcal{T}}\geq\mathcal{C}_0\sqrt{\log\mathcal{T}}.$

4 0 8 \mathcal{A} ×. Þ 画 Im-

 \mathcal{A} ×

4 0 8 \mathcal{A} ×. \mathcal{A} э ×

Theory for naive OS

• For the univariate Gaussian change in mean model above with a single change point (i.e. $\kappa = 1$), using CUSUM statistics as "gain":

Naive OS is consistent with **optimal localization** error if the ratio of shorter versus longer segment is not "too unbalanced". Formally, require not too unbalanced $\delta\lambda\sqrt{\mathcal{T}}\geq \mathcal{C}_0\sqrt{\log\mathcal{T}}.$

Suboptimal compared to weakest possible condition $\delta\sqrt{\lambda}\sqrt{\mathsf{T}}\geq$ √ $log log 7$ (see [\[Liu et al., 2019\]](#page-81-1)).

Theory for naive OS

• For the univariate Gaussian change in mean model above with a single change point (i.e. $\kappa = 1$), using CUSUM statistics as "gain":

Naive OS is consistent with **optimal localization** error if the ratio of shorter versus longer segment is not "too unbalanced". Formally, require not too unbalanced $\delta\lambda\sqrt{\mathcal{T}}\geq\mathcal{C}_0\sqrt{\log\mathcal{T}}.$

Suboptimal compared to weakest possible condition $\delta\sqrt{\lambda}\sqrt{\mathsf{T}}\geq$ √ $log log 7$ (see [\[Liu et al., 2019\]](#page-81-1)).

• Can we improve?

Theory for naive OS

• For the univariate Gaussian change in mean model above with a single change point (i.e. $\kappa = 1$), using CUSUM statistics as "gain":

Naive OS is consistent with **optimal localization** error if the ratio of shorter versus longer segment is not "too unbalanced". Formally, require not too unbalanced $\delta\lambda\sqrt{\mathcal{T}}\geq\mathcal{C}_0\sqrt{\log\mathcal{T}}.$

Suboptimal compared to weakest possible condition $\delta\sqrt{\lambda}\sqrt{\mathsf{T}}\geq$ √ $log log 7$ (see [\[Liu et al., 2019\]](#page-81-1)).

• Can we improve? Yes, advanced Optimistic Search!

Solt Kovács (ETH Zürich) [Optimistic search strategies](#page-0-0) 42 / 62

Advanced Optimistic Search

4 **D** F

 \equiv

Advanced Optimistic Search

advanced Optimistic Search

Idea:

- motivated by [\[Liu et al., 2019\]](#page-81-1) and [Kovács et al., 2020], check dyadic points $\{2, 4, 8, 16, \ldots, T - 16, T - 8, T - 4, T - 2\}$
- around maximum select a suitable starting region
- do naive OS in the selected region

advanced Optimistic Search

Idea:

- motivated by [\[Liu et al., 2019\]](#page-81-1) and [Kovács et al., 2020], check dyadic points $\{2, 4, 8, 16, \ldots, T - 16, T - 8, T - 4, T - 2\}$
- around maximum select a suitable starting region
- do naive OS in the selected region

Theory:

• For the univariate Gaussian change in mean model above with a **single** change point (i.e. $\kappa = 1$) the advanced OS is (nearly) minimax optimal.

advanced Optimistic Search

Idea:

- motivated by [\[Liu et al., 2019\]](#page-81-1) and [Kovács et al., 2020], check dyadic points $\{2, 4, 8, 16, \ldots, T - 16, T - 8, T - 4, T - 2\}$
- around maximum select a suitable starting region
- do naive OS in the selected region

Theory:

• For the univariate Gaussian change in mean model above with a **single** change point (i.e. $\kappa = 1$) the advanced OS is (nearly) minimax optimal. Forma[l](#page-53-0)ly, we require $\delta \sqrt{\lambda\,T} \geq \mathcal{C}_0 \sqrt{\log\,T}$ [.](#page-0-0)

Combinations possible with

- Binary Segmentation [\[Vostrikova, 1981\]](#page-82-1)
- Seeded Binary Segmentation [Kovács et al., 2020]
- Wild Binary Segmentation [\[Fryzlewicz, 2014\]](#page-81-3)
- Circular Binary Segmentation [\[Olshen et al., 2004\]](#page-81-4)

 \bullet . . .

Combinations possible with

- Binary Segmentation [\[Vostrikova, 1981\]](#page-82-1)
- Seeded Binary Segmentation [Kovács et al., 2020]
- Wild Binary Segmentation [\[Fryzlewicz, 2014\]](#page-81-3)
- Circular Binary Segmentation [\[Olshen et al., 2004\]](#page-81-4)

...

Random intervals [\[Fryzlewicz, 2014\]](#page-81-3)

 $Q \cap$

Seeded intervals [Kovács et al., 2020]

Optimistic Seeded Binary Segmentation (OSeedBS, with narrowest over threshold selection):

- Minimax optimality and worst case $O(T)$ computational cost for the above univariate Gaussian change in mean model with multiple change points, i.e. $\kappa > 1$
- **Sublinear** computational cost possible under additional assumptions

Optimistic Seeded BS (OSeedBS)

 \circ

Optimistic Binary Segmentation

Solt Kov´acs (ETH Z¨urich) [Optimistic search strategies](#page-0-0) 52 / 62

Special cases for multiple change points

Some ideas on how to tackle these special cases (maybe for discussion?)

So far, we considered the number of evaluations. Why?

• recall first example from introduction with high-dimensional Gaussian graphical models

So far, we considered the number of evaluations. Why?

- **•** recall first example from introduction with high-dimensional Gaussian graphical models
- no cheap updates of fits for neighbouring split points in complex models (e.g. lasso, graphical lasso, random forest, time series fits, etc.)

So far, we considered the number of evaluations. Why?

- **•** recall first example from introduction with high-dimensional Gaussian graphical models
- no cheap updates of fits for neighbouring split points in complex models (e.g. lasso, graphical lasso, random forest, time series fits, etc.)
- **•** hence, in more complex scenarios with such fits, driving cost is the number of evaluations

How about the univariate Gaussian case?

- If cumulative sums have been pre-computed:
	- then cost of an evaluation $O(1)$
	- **•** the (possibly **sublinear**) number of evaluations equals the actual computational costs

How about the univariate Gaussian case?

- If cumulative sums have been pre-computed:
	- then cost of an evaluation $O(1)$
	- **•** the (possibly **sublinear**) number of evaluations equals the actual computational costs
- If cumulative sums are not available:
	- calculating cumulative sums is $O(T)$

How about the univariate Gaussian case?

- If cumulative sums have been pre-computed:
	- then cost of an evaluation $O(1)$
	- **•** the (possibly **sublinear**) number of evaluations equals the actual computational costs
- If cumulative sums are not available:
	- calculating cumulative sums is $O(T)$
	- worst case cost $O(T)$ with NOT selection independently of number of change points (and statistically optimal)

Multiple change points? - An example

Overall:

- Multiple change points more challenging
- Many combinations possible with existing techniques with differing computational or theoretical advantages

Main messages

Optimistic Search strategies:

• very strong (asymptotic) guarantees in single change point cases (in univariate Gaussian change in mean model)

Main messages

Optimistic Search strategies:

- very strong (asymptotic) guarantees in single change point cases (in univariate Gaussian change in mean model)
- **•** extendable to multiple change point cases

Main messages

Optimistic Search strategies:

- very strong (asymptotic) guarantees in single change point cases (in univariate Gaussian change in mean model)
- **•** extendable to multiple change point cases
- \bullet extendable to multivariate/high-dim setups change point cases
Optimistic Search strategies:

- very strong (asymptotic) guarantees in single change point cases (in univariate Gaussian change in mean model)
- **•** extendable to multiple change point cases
- \bullet extendable to multivariate/high-dim setups change point cases
- **e** extendable to other distributions

Optimistic Search strategies:

- very strong (asymptotic) guarantees in single change point cases (in univariate Gaussian change in mean model)
- extendable to multiple change point cases
- \bullet extendable to multivariate/high-dim setups change point cases
- **e** extendable to other distributions
- **•** very few evaluations of the gain function, hence, super fast

Optimistic Search strategies:

- very strong (asymptotic) guarantees in single change point cases (in univariate Gaussian change in mean model)
- **•** extendable to multiple change point cases
- \bullet extendable to multivariate/high-dim setups change point cases
- **e** extendable to other distributions
- **•** very few evaluations of the gain function, hence, super fast
- \bullet applicable and most useful in more complex/costly multivariate, high-dimensional, etc. scenarios

Optimistic Search strategies:

- very strong (asymptotic) guarantees in single change point cases (in univariate Gaussian change in mean model)
- extendable to multiple change point cases
- \bullet extendable to multivariate/high-dim setups change point cases
- **e** extendable to other distributions
- **•** very few evaluations of the gain function, hence, super fast
- \bullet applicable and most useful in more complex/costly multivariate, high-dimensional, etc. scenarios
- simulation results: speedup (of [ord](#page-74-0)[e](#page-76-0)[r](#page-68-0)[s](#page-69-0)[o](#page-76-0)[f](#page-0-0) [m](#page-80-0)[ag](#page-0-0)[n](#page-80-0)[i](#page-81-0)[t](#page-0-0)[u](#page-80-0)[de](#page-82-0))

while barely sacrificing the statistical optimistic search strategies 58 / 62 \sim 58 / 62 \sim 58 / 62

- • could be applied to speed up many other multiple change point techniques (IDetect, CBS, ...)
- \bullet could be used in sequential/online setups

 \bullet

optimistic search: <arxiv.org/abs/2010.10194>

4 0 8

optimistic search: <arxiv.org/abs/2010.10194> seeded BS: <arxiv.org/abs/2002.06633>

optimistic search: <arxiv.org/abs/2010.10194> seeded BS: <arxiv.org/abs/2002.06633> Change-Point Detection for Graphical Models in the Presence of Missing Values: in JCGS

optimistic search: <arxiv.org/abs/2010.10194> seeded BS: <arxiv.org/abs/2002.06633> Change-Point Detection for Graphical Models in the Presence of **Missing Values**: in JCGS

Thank you for your attention!

Literature I

Avriel, M. and Wilde, D. J. (1966).

Optimality proof for the symmetric Fibonacci search technique. Fibonacci Quarterly, 4:265–269.

Avriel, M. and Wilde, D. J. (1968).

Golden block search for the maximum of unimodal functions. Management Science, 14(5):307–319.

Fryzlewicz, P. (2014).

Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6):2243–2281.

舙

F

螶

Kiefer, J. (1953). Sequential minimax search for a maximum.

Proceedings of the American Mathematical Society, 4:502–506.

Seeded binary segmentation: a general methodology for fast and optimal change point detection. arXiv:2002.06633.

Liu, H., Gao, C., and Samworth, R. J. (2019).

Minimax rates in sparse, high-dimensional changepoint detection. arXiv:1907.10012.

Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004). Circular binary segmentation for the analysis of arraybased DNA copy number data. Biostatistics, 5(4):557–572.

4 D F

그녀 말.

メスラメ

Literature II

Vostrikova, L. Y. (1981).

Detecting 'disorder' in multidimensional random processes. Soviet Mathematics Doklady, 24:270–274.

メロメ メ都 メメ きょくきょ