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An invite not to leave Bayes Stat behind

* [remendous expansion of the literature in change-point detection

e [Nis has not interested much

Bayesian statistics. Comparably, very little work

Fearmhead ‘06, Liu et al. 20, Wang et al. '20, C. et al. 21

x Computationally expensive

X

(Almost) No theoretical guarantees
® (On the properties of the estimator (e.q., localisation rate)

® (On the finite sample convergence of the algorithnms used for

e Should we care”

inference (e.g. MCMC)

Natural Uncertainty guantification

Modular/Generalizible



Liver

Time(hr)

loday

e New Bayesian proceadure 1o estimate changes in the
variance of a Gaussian seguence

300

X Point estimates and credible sets
* Offline setting
X Fast algorithm for inference

X Theory e e
e Motivation: Liver procurement [Geo et al, 2019 AO s T e
X Surface temperature avoids invasive biopsy % L % '“ l“{‘“ "
X Less risk to ruin the organs g W@ “"‘ "
e Many of the ideas generalise to other settings (hopefully  §4° o | 3
we will discuss at least one) 0 2 4'0Timae'o(HOU§'§) 100 120

3 Surface temperature at a randomly location



Detection of single change in variance with UQ

We collect T observations from a Gaussian seguence with a change in variance at ¢*

A working (Bayesian) model is
Change point (cp) location
Y:|y,= 1,6 ~ N(0,6%) T 1<i<t,
, o o | _ikelihood £ (Y;.7|¥, 0, T)
Y. |y, =l,0°,7~NQO,c7%6°) It t<i<T. |

Unknown scaling parameter

- _ _ ror on ¢
y ~ Categorical(T~Y, ..., T i S
, . Prior 7w(o, T)
t° | ay ~ Gamma(a, ap) lor on scale

parameter



In the spirt of [Chemoft

Bayesian change point detection Zcw s smin, 7

e Posterior avallable In closed form

P(}/t =1 |YI:T9 02) —

e |c. minimal computations

e ¥ naturally describes uncertainty on

change point location

P(yy.rly, = 1,6°)
2, POirlyi=1.0% -

Raftery Akman, '386; Wang et
al, '20]




FPoiNnt estimate and crediple sets

e (Change-point detection here Is an estimation problem, not a testing problem

. A point estimates could be max P(y, = 1| y;.7, 6°)
[

o Leta, = P(y,=1]|y,.7,06%), we can a credible sets of level p, describing

the uncertainty. €S8 (a, p) := arg min NE
SC{I»---»T}izEgO‘PP

e \/ariance estimates are also avallable

r t T
T = E[r°] = (alﬁ% +1l—a,aft+as5+1—a —a, ..., Z ;87 + 1 — Z Ay e z ocl@%),
=1 =1 =1



[ heoretical guarantees

Thm. [C. & Padilla, ’22] Under m

attaiNs a mnimax localization ra:

ld conditior

e” up for a

variance of a Gaussian sequence

S, the Bayes

an point estimator described

ogarithm fac

or for a single change In

e Minimax localization rate for variance Is \/ T'log T [Wang et al. 2021]

e * fhe rate Is INn the multiple change-point case



Towards multiple change point

Single change-point model

| —1 —1
Y:|y,=1,6> ~ N©0,c% f1<i<t y ~ Categorica(T—", ..., T™")
Y:|y,= 1,6t ~N@O,z %% if t<i<T. | ay ~ Gammal(ay, ay)

Two change-points model

2Nnd change point location
, , , | y, ~ Categorical(T™!, ..., T~
Y. |y,,=1lr.,=1l,0 ~ N(0,07) T 1<i<t, | » »
’ | , , : Y, ~ Categorical(T~", ..., T™")
172 M52 = 2050 N7 7o) PSESS 712 | ay ~ Gamma(ay, a,)

B R, —2_-2 2\ -
Vil =Lra =106~ NOq G0 W s<i<T 5 commaca, a)

2Nna Unknown scaling parameter
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PRISCA: PRoduct Single SCAle effect

Arbitrary number L of change points

2 2 - .
Y. | Vea= Loy, = l,6%, 7, ...,7; ~ N(0,07) T 1<i<t,

Y. | Vo1 = Lo 1= 1,072, Ty euns Tp ™~ N(O,Hlfl_zdz) Tt <i<T,
y, ~ Categorical(T~!, ..., T™1

le ‘ aO ~ Gamma(ao, Clo)

e | |slike an upper bound on the number of change-points
* d, shared ana center the mean at 1



Fitting PRISCA

e Ideally, we would like p(t2,, v1.1 | y1.7» 62) or marginals p(t7, 7,| yy.7» 62) for al [

e The model we wrote is conditionally conjugate, i.e., given (t7, Yi)ip We can do an
Update.

® [Nis suggests an easy Giblbs sampler.
e \Ve don't want to do that

f1had (7);, we could compute residuals r? = y? o HE[T?] and the posterior
i#]
Aistribution p(le, 71 rlz, 02) 'similar to Wang et al, 2020]

e The idea/hope is that p(z2, 7,12, %) Is a good approximation for p(z7, ¥, | yy.7» 6°)

10



Algorithm 1

Inout: L, ag
0. Initiglize 77 = E[7] = 1 for all |
1. ror/in 71.L repeat

a. Compute residuals: r; = y* HTZ/ Notation

D. FIt the single change point to the resiauails: Lo

compute posterior 77 and ¥,

c. Update 7;
2. Repeat 1 until convergence (backfitting)

Output is posterior distribution of y,,...,y; and 7}, ..., T;

11



Output
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Simulations

o [ssential taken from the PELT paper [Kilick et al. “12]
+ Random change point locations and variances
+ Various sample sizes, #changepoints, and multiple datasets per combination

e Compared to
+ PELT (dynamic programming)
+ Binary Segmentation [Scott Knott '74]
+ Segment Neighbournood (dynamic programming) [Auger Lawrence "89]

o Ve report bias (K — f{\), Hausdorft-like guantity (d(/%> | €*) = max min |x —7])
NEGC™ xe@

13



Simulations: results  © Averages across T
e PRISCA has L = [1/T/30)

e 0ra-PRISCAL =K
o auto-PRISCA automatic

e a =107

AN

Method K—-K d(C,C*) Time
auto-PRISCA 2.11 124.49 0.91

BINSEG 2.96 212.28 0
PELT 2.6 176.42 0
PRISCA 1.98 131.44  0.66

ora-PRISCA 1.9 118.17 0.07
SEGNEI 2.42 193.2 0.36

14



Why it works”?

Prop1. [C. & Padilla, ’22] Algorithm 1 is a specific Variational approximation to the model
presented

e [ntuition from [Wang et al, 2020]
* [Nis means that the algoritnm Is a coordinate ascent
o [or PRISCA we can compute the ELBO to have convergence criterion

Prop2. [C. & Padilla, ’22] Algorithm 1 converges to a limit point that Is a stationary point
of the objective tunction.

15



Modular algorithm easy to generalise

Inout: L, a,
0. Initialisation
1. A.Forlin 1.L, repeat
a. Compute residuals: r; = rg o HE [77]
['#l
D. Fit the single change point to the residuals:
compute posterior 77 and ¥,
5. a. Hit any arbitrary procedure that "may benefit” from
variance estimates
. Compute Compute residuals. r

B
2. And 3. Same as before

* c.g. 'may benefit” iIs something to solve with weighted least square
®* c.g. autoregression or smooth trend

16




=.Q. Irendfiltering with heteroskedasticty

o Y. =/ + € with f, “smooth” and (€,) .7 piecewise constant taking K values

o B, Can be [Tibshirani, 14] trend filtering solved with weighted least squares
o Set up of [Gao et al. "19] generalised to multiple K

e Simulatior T Moethod R

d(C,C*) Time

e 6 =1{.15T,4T,. 15T, 85T} 200 PRISCA 3 169 0.11
R ft — 20 + 12t/T(1 _ t/T) ora-PRISCA 0.4 32.42 0.04
pre-PRISCA 3 169 0.01

TF-PRISCA 0.16 30.44 4.09

500 PRISCA 3 424 0.11

ora-PRISCA -0.29 12.14 0.11

pre-PRISCA 3 424 0.01

TF-PRISCA -0.35 15.61 2.45

1000 PRISCA 3 849 0.13

ora-PRISCA -0.34 9.74 0.22

pre-PRISCA 3 349 0.03

- TF-PRISCA -0.38 9.5 5.02




| Iver procurement

—/

Setrended with Tibshirani's (2014)
trend filtering

N the loop of Algorithm 1
ighest posterior probability at 60.
L gives 59

t Is possible to include a trend filtering

18

Posterior ¥ Temperature (Celsius)
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Conclusion

e Procedure to estimate multiple changes in the variance of a Gaussian seguence
Y [t is computationally efficient
v We still get credible sets
e (Some) Theory available:
v Single change point estimators attains minimax rate up to a logarithm factor
v Convergence of the algorithm in the multiple change point case

19



Future directions

Methodological
e (Seneralizations: count data, multivariate (e.g. covariance), times-series
e X "Known Issues’ In Variational Bayes

o Related to the credible sets: FDR control using our posterior estimates [Bayesian linear
programming, Spector Janson, '22]

Theory
o (Consistency/Localization rate in the multiple change-points case.
o (Credible sets frequentist coverage (Bernstein-von Mises type of theorems)

20



Thanks

A draft recently online (arXiv:2211.14097)
lorenzo.cappello@upt.edu comments welcome!

There is a R package as well to try it out

21
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Theoretical guarantees (zoom in)

Assumption 1. Let t be the time instance such that Y; "N (0,02) fort >ty and Y, wd A7 (0, 012)
fort < to, and let T° = 07 /o?.
a. There exists a constant ¢ > 0 such that min{ty,T — to} > cT.

b. For some fixed intervals I, C (1,00) and I, C (0,1) we have that 7> € I, U I,.

c. The hyperparameters are chosen such that ay > 0 and 7w satisfies that m; > 0 for all t and

Zt Ty — 1.

Theorem 1. Supposed that Assumption 1 holds. Then, for ¢ > 0 there exists a constant c; > 0
such that, with probability approaching one, we have that

IMax oy < Al -
t:min{t,T—t}>cT,|t—to|>c14/T logtte T

22



Why it works®”? Preliminaries

BSased on an intuition in [Wang et al. 2020]

Let p be the target posterior distribution, for g € @, we can see Bayesian posterior
computation as an optimization problem:

arg min KL(q | | p) = arg min[log p(y | 6°) — ELBO(q, 6%,y)] = arg max ELBO(q, 6*,V)
q q q

\With no restrictions on @, the posterior computation is exact: KL=0
Variational Bayes is an approximation only if @ is restricted

, Assuming ¢(7) = qu(yl, 7)), we can maximize the ELBO component-wise

[

arg max ELBO(q, o2, V), ...,arg max ELBO(q, o2, V)

q1 qr
23



PRISCA convergence

Prop1. [C. & Padilla, ’22] [he solution of arg max ELBO(q, 62, V) is equal to the solution of
q

the single change point model applied to the residuals r; = y* o HE[le]
£l

e [his Is exactly what we are doing at each iteration when we fit PRISCA
* [Nis means that the algorithm Is a coordinate ascent

o For PRISCA we can compute the ELBO to have convergence criterion

Prop?2. [C. & Padilla, ’22] Algorithm 1 converges to a limit point that Is a stationary point
of the objective tunction.
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