Variance change point detection with credible sets

Lorenzo Cappello Joint work with Oscar Madrid Padilla (UCLA)

> StatScale ECR Meeting, Brighton, Dec 14 to 16 2022

Jniversitat **Pompeu Fabra Barcelona**

Barcelona School of Economics

arXiv:2211.14097

- Tremendous expansion of the literature in change-point detection
- This has not interested much Bayesian statistics. Comparably, very little work [Fearnhead '06, Liu et al. '20, Wang et al. '20, C. et al. '21]

X Computationally expensive

An invite not to leave Bayes Stat behind

- Should we care?
- - Modular/Generalizible

(Almost) No theoretical guarantees • On the properties of the estimator (*e.g.,* localisation rate) • On the finite sample convergence of the algorithms used for

- -
	- inference (*e.g.* MCMC)

Natural Uncertainty quantification

- New Bayesian procedure to estimate changes in the variance of a Gaussian sequence
	- ✴ Point estimates and credible sets
	- ✴ Offline setting
	- ✴ Fast algorithm for inference
	- ✴ Theory
- Motivation: Liver procurement [Gao et al, 2019] ✴ Surface temperature avoids invasive biopsy ✴ Less risk to ruin the organs
- Many of the ideas generalise to other settings (hopefully we will discuss at least one)

Today

Surface temperature at a randomly location

Liver

Detection of single change in variance with UQ

We collect T observations from a Gaussian sequence with a change in variance at t^*

4

Prior on cp
Iocation
Prior on scale location

A working (Bayesian) model is

Change point (cp) location

$$
\gamma \sim \text{Categorical}(T^{-1}, ..., T^{-1})
$$

 τ^2 | $a_0 \sim$ Gamma (a_0, a_0)

$$
\begin{cases} Y_i \mid \gamma_t = 1, \sigma^2 < N(0, \sigma^2) & \text{if } 1 \leq i < t, \\ Y_i \mid \gamma_t = 1, \sigma^2, \tau < N(0, \tau^{-2} \sigma^2) & \text{if } t \leq i \leq T. \end{cases}
$$

Unknown scaling parameter

parameter

Prior *π*(*σ*, *τ*)

 \searrow

- Posterior available in closed form *P*(γ ^{*t*} = 1| y _{1:*T*}, σ ² $) =$ *P*(*y*_{1:*T*} | $\gamma_t = 1, \sigma^2$ $\sum_{i} P(y_{1:T} | \gamma_i = 1, \sigma^2)$
- I.e. <u>minimal computations</u>
- *γ* naturally describes uncertainty on change point location

Bayesian change point detection **In the spirit of [Chernot** In the spirit of [Chernoff Raftery Akman, '86; Wang et al. '20]

Point estimate and credible sets

• Change-point detection here is an estimation problem, not a testing problem

P(γ ^{*t*} = 1| y _{1:*T*}, σ ²)

• Let $\alpha_t = P(\gamma_t = 1 \,|\, y_{1\cdot T}, \sigma^2)$, we can a **credible sets** of level p, describing $S \subset \{1, \ldots, T\}$: $\sum_{t \in S} \alpha_t > p$ |*S*| .

-
- A point estimates could be max *t*
- the uncertainty. $\mathscr{C}\mathscr{S}(\alpha,p) := \arg$ min $\alpha_t = P(\gamma_t = 1 | y_{1:T}, \sigma^2)$)
- Variance estimates are also available $\overline{\tau}^2 = E[\tau^2] = \left(\alpha_1 \hat{s}_1^2 + 1 - \alpha_1, \alpha_1 \hat{s}_1^2 + \alpha_2 \hat{s}_2^2 + 1 - \alpha_1 - \alpha_2, ..., \right)$ ̂ ̂ ̂

$$
-1-\alpha_1-\alpha_2,...,\sum_{i=1}^t\alpha_i s_i^2+1-\sum_{i=1}^t\alpha_i,...,\sum_{i=1}^T\alpha_i s_i^2,
$$

Theoretical guarantees

Thm. [C. & Padilla, '22] Under mild conditions, the Bayesian point estimator described

• Minimax localization rate for variance is $\sqrt{T \log T}$ [Wang et al. 2021]

attains a minimax localization rate* up for a logarithm factor for a single change in variance of a Gaussian sequence

-
- *: the rate is in the multiple change-point case

Towards multiple change point

γ ∼ Categorical(*T*−¹ ,…, *T*−¹) $\langle t, \rangle$ $\leq T$. τ^2 | $a_0 \sim$ Gamma (a_0, a_0)

$$
\begin{cases} Y_i \mid \gamma_t = 1, \sigma^2 & \sim N(0, \sigma^2) & \text{if } 1 \leq i < j \\ Y_i \mid \gamma_t = 1, \sigma^2, \tau \sim N(0, \tau^{-2} \sigma^2) & \text{if } t \leq i \leq j \end{cases}
$$

Single change-point model

$$
\begin{cases}\nY_i \mid \gamma_{t,1} = 1, & \gamma_{s,2} = 1, & \sigma^2 \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{s,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{s,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{s,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{s,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{s,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{s,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{s,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{t,1} = 1, & \gamma_{t,2} = 1, & \sigma^2, \\
Y_i \mid \gamma_{
$$

Two change-points model

2nd change point location

2nd Unknown scaling parameter

PRISCA: PRoduct Single SCAle effect

$$
\begin{cases} Y_i \mid \gamma_{t_1,1} = 1, \dots, \gamma_{t_L,L} = 1, \sigma^2 \\ \dots \\ Y_i \mid \gamma_{t_1,1} = 1, \dots, \gamma_{t_L,L} = 1, \sigma^2 \\ \gamma_l \sim \text{Categorical} \\ \tau_l^2 \mid a_0 \sim \text{Gal} \end{cases}
$$

- L is like an upper bound on the number of change-points \bullet a_0 shared and center the mean at 1
- , $\tau_1, ..., \tau_L \sim N(0, \sigma^2)$ if $1 \le i \le t_1$, , τ_1 , ..., $\tau_L \sim N(0, \prod_l$ $\tau_l^{-2} \sigma^2$) if $t_L \leq i < T$, *γ^l* ∼ Categorical(*T*−¹ ,…, *T*−¹) $mma(a_0, a_0)$

Arbitrary number L of change points

Fitting PRISCA

-
- update.
- This suggests an easy Gibbs sampler.
- We don't want to do that \bullet

• Ideally, we would like $p(\tau_{1:L}^2, \gamma_{1:L}|y_{1:T}, \sigma^2)$ or marginals $p(\tau_l^2, \gamma_l|y_{1:T}, \sigma^2)$ for all • The model we wrote is *conditionally conjugate*, *i.e.*, given $(\tau_i^2, \gamma_i)_{i\neq l}$, we can do an) for all l *ⁱ* , *γⁱ*)*i*≠*^l*

If I had $(\bar{\tau}_i^2)_{i\neq l}$, we could compute **residuals** $r_l^2 = y^2 \circ \prod E[\tau_i^2]$ and the posterior $(\overline{\tau}_i^2)_{i \neq l}$, we could compute **residuals** $r_l^2 = y^2 \circ \prod E[\tau_i^2]$ *i*≠*l i*]

• The idea/hope is that $p(\tau_l^2, \gamma_l|\bm{r}_l^2, \sigma^2)$ is a good approximation for $p(\tau_l^2, \gamma_l|\bm{y}_{1:T}, \sigma^2)$

distribution $p(\tau_l^2, \gamma_l | \boldsymbol{r}_l^2, \sigma^2)$ [similar to Wang et al, 2020])

Input: *L*, *a*⁰ 0. Initialize $\bar{\tau}_l^2 = E[\tau_l^2] = 1$ for all I 1. For *l* in *1:L* repeat a. *Compute residue*

b. Fit the single cha compute posteri c. Update $\bar{\tau}_l^2$ 2. Repeat 1 until convergence (*backfitting*) $\boldsymbol{\tau}_l^2$ *^l* and *γ^l l*

<u>Output is posterior distribution of</u> $\gamma_1, \ldots, \gamma_L$ and τ_1, \ldots, τ_L

Notation $\mathbf{x}^k = (x_i^k)$ $\binom{k}{i}$ 1:*T*

$$
= 1 \text{ for all } l
$$

als: $r_l^2 = y^2 \cdot \prod_{l' \neq l} \overline{\tau_{l'}}^2$
ange point to the residuals
ior τ_l^2 and γ_l

Algorithm 1

 \bullet T=500 • L set to 9

Output

Simulations

✦ Various sample sizes, #changepoints, and multiple datasets per combination

• We report bias $(K - \hat{K})$, Hausdorff-like quantity $(d(\mathscr{C} | \mathscr{C}^*) = \max_{x \in \mathscr{C}^*} \min_{x \in \hat{\mathscr{C}}} |x - \eta|)$ η ∈ * min *x*∈ $|x - \eta|$

- Essential taken from the PELT paper [Killick et al. '12] ✦ Random change point locations and variances
- Compared to ✦ PELT (dynamic programming) ✦ Binary Segmentation [Scott Knott '74] ✦ Segment Neighbourhood (dynamic programming) [Auger Lawrence '89]
-

Simulations: results

• Averages across T • PRISCA has $L = \lfloor \sqrt{T/30} \rfloor$ • $ora-PRISCA L = K$ • auto-PRISCA automatic L

 \bullet $a = 10^{-3}$

Why it works?

presented

- Intuition from Mang et al, 2020]
- This means that the algorithm is a coordinate ascent
- For PRISCA we can compute the ELBO to have convergence criterion

Prop2. [C. & Padilla, '22] Algorithm 1 converges to a limit point that is a stationary point of the objective function.

Prop1. [C. & Padilla, '22] Algorithm 1 is a specific Variational approximation to the model

Modular algorithm easy to generalise

Input: *L*, *a*⁰ 0. Initialisation 1. A. For *l* in *1:L,* repeat a. Compute residua b. Fit the single cha compute posterio B. a. Fit any arbitrary pro *variance estimates* b. *Compute Compute residuals: r* 2. And 3. Same as before r_l^2 $n_l^2 = r_B^2$ $\frac{2}{B}$ ∘ \prod *l*′≠*l* $E[\tau_{l'}^2]$ *l*′] $\boldsymbol{\tau}_l^2$ *^l* and *γ^l B* • e.g. "may benefit" is something to solve with weighted least square • e.g. autoregression or smooth trend

als:
$$
r_l^2 = r_B^2 \cdot \prod_{l' \neq l} E[r_{l'}^2]
$$

\nrange point to the residuals:

\nor r_l^2 and γ_l

\nocedure that "may benefit" from

E.g. Trendfiltering with heteroskedasticty

-
- B. Can be [Tibshirani,'14] trend filtering solved with weighted least squares
- Set up of [Gao et al. '19] generalised to multiple K
- Simulation
	- $\mathscr{C} = \{ .15T, .4T, .75T, .85T \}$
	- $f_t = 20 + 12t/T(1 t/T)$

• $Y_t = f_t + \epsilon_t$ with f_t "smooth" and $(\epsilon_t)_{1:T}$ piecewise constant taking K values

Liver procurement

$=$

- Detrended with Tibshirani's (2014) trend filtering
- It is possible to include a trend filtering in the loop of Algorithm 1
- Highest posterior probability at 60. PELT gives 59

0 20 40 60 80 100 120

Surface temperature over time at a randomly selected point in a liver

(Celidis) Temperature (Celsius) emperature

Conclusion

• Procedure to estimate multiple changes in the variance of a Gaussian sequence

- ✓ It is computationally efficient ✓ We still get credible sets • (Some) Theory available:
	-
	- ✓ Convergence of the algorithm in the multiple change point case

✓ Single change point estimators attains minimax rate up to a logarithm factor

Future directions

Methodological

- Generalizations: count data, multivariate (e.g. covariance), times-series
- Fix "known issues" in Variational Bayes
- Related to the credible sets: FDR control using our posterior estimates [*Bayesian linear programming,* Spector Janson, '22]

Theory

- Consistency/Localization rate in the multiple change-points case. • Credible sets frequentist coverage (*Bernstein-von Mises* type of theorems)
-

Thanks

A draft recently online (arXiv:2211.14097) lorenzo.cappello@upf.edu comments welcome!

There is a R package as well to try it out

Theoretical guarantees (zoom in)

Assumption 1. Let t_0 be the time instance such that $Y_t \stackrel{iid}{\sim} N(0, \sigma_r^2)$ for $t \ge t_0$ and $Y_t \stackrel{iid}{\sim} N(0, \sigma_l^2)$ for $t < t_0$, and let $\tau^2 = \sigma_l^2/\sigma_r^2$.

- a. There exists a constant $c > 0$ such that $\min\{t_0, T t_0\} > cT$.
- b. For some fixed intervals $I_1 \subset (1,\infty)$ and $I_2 \subset (0,1)$ we have that $\tau^2 \in I_1 \cup I_2$.
- $\sum_{t} \pi_t = 1.$

Theorem 1. Supposed that Assumption 1 holds. Then, for $\epsilon > 0$ there exists a constant $c_1 > 0$ such that, with probability approaching one, we have that

> $\alpha_t < \alpha_{t_0}.$ max $t:\!\min\{t,T\!-\!t\}\!>\!cT,\!|t\!-\!t_0|\!>\!c_1\sqrt{T\log^{1+\epsilon}T}$

c. The hyperparameters are chosen such that $a_0 > 0$ and π satisfies that $\pi_t > 0$ for all t and

Why it works? Preliminaries

- Based on an intuition in [Wang et al. 2020]
- computation as an optimization problem:

arg min *q* $KL(q||p) = \arg \min$ *q* $[\log p(y | \sigma^2) - ELBO(q, \sigma^2, y)] = \arg \max$ *q* $ELBO(q, \sigma^2, y)$

- With no restrictions on Q , the posterior computation is exact: KL=0
- Variational Bayes is an approximation only if Q is restricted • Assuming $q(\tau) = \prod q_l(\gamma_l, \tau_l)$, we can maximize the ELBO component-wise

arg max *ELBO*(*q*, *σ*² , y), …, arg max *ELBO*(*q*, *σ*² , y)*q*1 q_L

• Let p be the target posterior distribution, for $q \in \mathcal{Q}$, we can see Bayesian posterior

l

PRISCA convergence

Prop1. [C. & Padilla, '22] The solution of $\arg\max ELBO(q, \sigma^2, \text{y})$ is equal to the solution of the single change point model applied to the residuals $r_l^2 = y^2 \circ \prod E[\tau_l^2]$ *ql l*′≠*l l*]

- This is exactly what we are doing at each iteration when we fit PRISCA
- This means that the algorithm is a coordinate ascent
- For PRISCA we can compute the ELBO to have convergence criterion

Prop2. [C. & Padilla, '22] Algorithm 1 converges to a limit point that is a stationary point of the objective function.