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• Tremendous expansion of the literature in change-point detection

• This has not interested much Bayesian statistics. Comparably, very little work 

[Fearnhead ’06, Liu et al. ’20, Wang et al. ’20, C. et al. ’21]

An invite not to leave Bayes Stat behind
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Computationally expensive

(Almost) No theoretical guarantees

• On the properties of the estimator (e.g., localisation rate)

• On the finite sample convergence of the algorithms used for 

inference (e.g. MCMC)

Natural Uncertainty quantification

Modular/Generalizible

• Should we care? 



• New Bayesian procedure to estimate changes in the 
variance of a Gaussian sequence


✴ Point estimates and credible sets

✴ Offline setting

✴ Fast algorithm for inference

✴ Theory


• Motivation: Liver procurement [Gao et al, 2019]


✴ Surface temperature avoids invasive biopsy

✴ Less risk to ruin the organs


• Many of the ideas generalise to other settings (hopefully 
we will discuss at least one)

Today
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Detection of single change in variance with UQ 
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We collect T observations from a Gaussian sequence with a change in variance at t*

A working (Bayesian) model is 
Change point (cp) location

γ ∼ Categorical(T−1, …, T−1) Prior on cp 
location

{Yi ∣ γt = 1,σ2 ∼ N(0,σ2) if 1 ≤ i < t,
Yi ∣ γt = 1,σ2, τ ∼ N(0,τ−2σ2) if t ≤ i ≤ T .

Unknown scaling parameter

τ2 |a0 ∼ Gamma(a0, a0) Prior on scale 
parameter

Likelihood ℒ(Y1:T |γ, σ, τ)

Prior π(σ, τ)



Bayesian change point detection
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• Posterior available in closed form 




•  I.e. minimal computations

•  naturally describes uncertainty on 

change point location


P(γt = 1 |y1:T, σ2) =
P(y1:T |γt = 1,σ2)

∑i P(y1:T |γi = 1,σ2)

γ
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In the spirit of [Chernoff 
Zacks,’64; Smith, ’75; 
Raftery Akman, ’86; Wang et 
al. ’20]



Point estimate and credible sets
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• Change-point detection here is an estimation problem, not a testing problem


• A point estimates could be 


• Let , we can a credible sets of level p, describing 
the uncertainty. 


• Variance estimates are also available 




max
t

P(γt = 1 |y1:T, σ2)

αt = P(γt = 1 |y1:T, σ2)
𝒞𝒮(α, p) := arg min

S⊂{1,…,T}:∑t∈S αt>p
|S | .

τ2 = E[τ2] = (α1 ̂s2
1 + 1 − α1, α1 ̂s2

1 + α2 ̂s2
2 + 1 − α1 − α2, …,

t

∑
i=1

αi ̂s2
i + 1 −

t

∑
i=1

αi, …,
T

∑
i=1

αi ̂s2
i ),



Theoretical guarantees
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 Thm. [C. & Padilla, ’22] Under mild conditions, the Bayesian point estimator described 
attains a minimax localization rate* up for a logarithm factor for a single change in 
variance of a Gaussian sequence

• Minimax localization rate for variance is  [Wang et al. 2021]

• *: the rate is in the multiple change-point case

T log T



Towards multiple change point
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γ ∼ Categorical(T−1, …, T−1)

{Yi ∣ γt = 1,σ2 ∼ N(0,σ2) if 1 ≤ i < t,
Yi ∣ γt = 1,σ2, τ ∼ N(0,τ−2σ2) if t ≤ i ≤ T . τ2 |a0 ∼ Gamma(a0, a0)

Single change-point model

γ1 ∼ Categorical(T−1, …, T−1)
Yi ∣ γt,1 = 1,γs,2 = 1,σ2 ∼ N(0,σ2) if 1 ≤ i < t,

Yi ∣ γt,1 = 1,γs,2 = 1,σ2, τ1 ∼ N(0,τ−2
1 σ2) if t ≤ i < s,

Yi ∣ γt,1 = 1,γs,2 = 1,σ2, τ1, τ2 ∼ N(0,τ−2
1 τ−2

2 σ2) if s ≤ i < T,

Two change-points model

γ2 ∼ Categorical(T−1, …, T−1)
τ2

1 |a0 ∼ Gamma(a0, a0)
τ2

2 |a0 ∼ Gamma(a0, a0)

2nd change point location

2nd Unknown scaling parameter



PRISCA: PRoduct Single SCAle effect 
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Yi ∣ γt1,1 = 1,…, γtL,L = 1,σ2, τ1, …, τL ∼ N(0,σ2) if 1 ≤ i < t1,
⋯
Yi ∣ γt1,1 = 1,…, γtL,L = 1,σ2, τ1, …, τL ∼ N(0,∏l τ

−2
l σ2) if tL ≤ i < T,

Arbitrary number L of change points

γl ∼ Categorical(T−1, …, T−1)

τ2
l |a0 ∼ Gamma(a0, a0)

• L is like an upper bound on the number of change-points

•  shared and center the mean at 1a0



Fitting PRISCA
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• Ideally, we would like  or marginals  for all 


• The model we wrote is conditionally conjugate, i.e., given , we can do an 
update. 


• This suggests an easy Gibbs sampler.

• We don’t want to do that


• If I had , we could compute residuals  and the posterior 

distribution  [similar to Wang et al, 2020]


• The idea/hope is that  is a good approximation for 

p(τ2
1:L, γ1:L |y1:T, σ2) p(τ2

l , γl |y1:T, σ2) l

(τ2
i , γi)i≠l

(τ2
i )i≠l r2

l = y2 ∘ ∏
i≠l

E[τ2
i ]

p(τ2
l , γl |r2

l , σ2)

p(τ2
l , γl |r2

l , σ2) p(τ2
l , γl |y1:T, σ2)
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Input: 

0.  Initialize  for all l

1. For l in 1:L repeat


a. Compute residuals: 


b. Fit the single change point to the residuals: 
compute posterior 


c. Update 

2. Repeat 1 until convergence (backfitting)

L, a0
τ2

l = E[τ2
l ] = 1

r2
l = y2 ∘ ∏

l′￼≠l

τl′￼

2

τ2
l  and γl

τ2
l

Algorithm 1

Notation
xk = (xk

i )1:T

Output is posterior distribution of  and   γ1, …, γL τ1, …, τL
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• T=500
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Simulations
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• Essential taken from the PELT paper [Killick et al. ‘12]

✦ Random change point locations and variances

✦ Various sample sizes, #changepoints, and multiple datasets per combination


• Compared to 

✦ PELT (dynamic programming) 

✦ Binary Segmentation [Scott Knott ’74]

✦ Segment Neighbourhood (dynamic programming) [Auger Lawrence ’89]


• We report bias ( ), Hausdorff-like quantity ( )
K − ̂K d( ̂𝒞 |𝒞*) = max
η∈𝒞*

min
x∈ ̂𝒞

|x − η |



Simulations: results
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• Averages across T

• PRISCA has 

• ora-PRISCA 

• auto-PRISCA automatic L

•

L = ⌊ T /30⌋
L = K

a = 10−3



Why it works? 

15

Prop1. [C. & Padilla, ’22] Algorithm 1 is a specific Variational approximation to the model 
presented

• Intuition from [Wang et al, 2020]

• This means that the algorithm is a coordinate ascent  

• For PRISCA we can compute the ELBO to have convergence criterion

 Prop2. [C. & Padilla, ’22] Algorithm 1 converges to a limit point that is a stationary point 
of the objective function.



Modular algorithm easy to generalise
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Input: 

0.   Initialisation

1. A. For l in 1:L, repeat


a. Compute residuals: 


b. Fit the single change point to the residuals: 
compute posterior 


B. a. Fit any arbitrary procedure that “may benefit” from 
variance estimates


b. Compute Compute residuals: 

2. And 3. Same as before

L, a0

r2
l = r2

B ∘ ∏
l′￼≠l

E[τ2
l′￼
]

τ2
l  and γl

rB

• e.g. “may benefit” is something to solve with weighted least square

• e.g. autoregression or smooth trend



E.g. Trendfiltering with heteroskedasticty
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•  with  “smooth” and  piecewise constant taking K values

• B. Can be [Tibshirani,’14] trend filtering solved with weighted least squares

• Set up of [Gao et al. ’19] generalised to multiple K

• Simulation

Yt = ft + ϵt ft (ϵt)1:T

• 

•

𝒞 = {.15 T, .4 T, .75 T, .85 T}
ft = 20 + 12t/T(1 − t/T)



Liver procurement

18

0 20 40 60 80 100 120

22
.5

23
.5

24
.5

Time

y
0 20 40 60 80 100 120

0.
00

0.
10

0.
20

0.
30

Time

Po
st
er
io
r

Surface temperature over time at a 
randomly selected point in a liver  

Po
st

er
ior

 γ
Te

m
pe

ra
tu

re
 (C

els
ius

)

• L=4

• Detrended with Tibshirani's (2014) 

trend filtering 

• It is possible to include a trend filtering 

in the loop of Algorithm 1

• Highest posterior probability at 60. 

PELT gives 59



Conclusion
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• Procedure to estimate multiple changes in the variance of a Gaussian sequence

✓ It is computationally efficient 

✓ We still get credible sets


• (Some) Theory available:

✓ Single change point estimators attains minimax rate up to a logarithm factor

✓ Convergence of the algorithm in the multiple change point case




Future directions
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Methodological 
• Generalizations: count data, multivariate (e.g. covariance), times-series

• Fix “known issues” in Variational Bayes

• Related to the credible sets: FDR control using our posterior estimates [Bayesian linear 

programming, Spector Janson, ’22]

Theory 
• Consistency/Localization rate in the multiple change-points case.

• Credible sets frequentist coverage (Bernstein-von Mises type of theorems)



Thanks
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A draft recently online (arXiv:2211.14097)

lorenzo.cappello@upf.edu comments welcome!


There is a R package as well to try it out

mailto:lorenzo.cappello@upf.edu


Theoretical guarantees (zoom in)
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Why it works? Preliminaries  
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• Based on an intuition in [Wang et al. 2020]

• Let  be the target posterior distribution, for , we can see Bayesian posterior 

computation as an optimization problem:
p q ∈ 𝒬

arg min
q

KL(q | |p) = arg min
q

[log p(y |σ2) − ELBO(q, σ2, y)] = arg max
q

ELBO(q, σ2, y)

• With no restrictions on , the posterior computation is exact: KL=0

• Variational Bayes is an approximation only if  is restricted


• Assuming , we can maximize the ELBO component-wise

𝒬
𝒬

q(τ) = ∏
l

ql(γl, τl)

arg max
q1

ELBO(q, σ2, y), …, arg max
qL

ELBO(q, σ2, y)



PRISCA convergence
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 Prop1. [C. & Padilla, ’22] The solution of  is equal to the solution of 

the single change point model applied to the residuals 

arg max
ql

ELBO(q, σ2, y)

r2
l = y2 ∘ ∏

l′￼≠l

E[τ2
l ]

• This is exactly what we are doing at each iteration when we fit PRISCA

• This means that the algorithm is a coordinate ascent  

• For PRISCA we can compute the ELBO to have convergence criterion

 Prop2. [C. & Padilla, ’22] Algorithm 1 converges to a limit point that is a stationary point 
of the objective function.


